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Probabilistic Approach to Homoclinic Chaos 
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Three-dimensional systems possessing a homoclinic orbit associated to a saddle 
focus with eigenvalues p + ico, - 2  and giving rise to homoclinic chaos when the 
Shil'nikov condition p < 2 is satisfied are studied. The 2D Poincar~ map and its 
1D contractions capturing the essential features of the flow are given. At 
homoclinicity, these I D maps are found to be piecewise linear. This property 
allows one to reduce the Frobenius-Perron equation to a master equation 
whose solution is analytically known. The probabilistic properties such as the 
time autocorrelation function of the state variable x are explicitly derived. 
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1. I N T R O D U C T I O N  

It is by n o w  widely  recogn ized  that  o w i n g  to the p r o p e r t y  o f  sensi t ivi ty to 
initial cond i t ions ,  a p robab i l i s t i c  fo rmal i sm cons t i tu tes  the na tu ra l  a p p r o a c h  

to de te rmin i s t i c  chaos.  T h e  s ta r t ing  po in t  o f  this fo rmal i sm is a Liouvi l le-  

like e q u a t i o n  descr ib ing  the e v o l u t i o n  o f  the p robab i l i t y  densi ty ,  which  for 

discrete  m a p s  is k n o w n  as the F r o b e n i u s - P e r r o n  e q u a t i o n  t~ and  takes  the 

form 

p,, + ](x) - ~p, , (x)  = f r  dy 6(x - f (  y, p))  p,,(y) (1) 

Here  p,,(x) is the  p robab i l i t y  dens i ty  at t ime n, F the phase  space  reg ion  

avai lab le  to the system, and  f ( x ,  ll) the  de te rmin is t ic  e v o l u t i o n  law 

x .+ ,  = f ( x , , ,  p )  (2) 
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p being the control parameter. A great deal of progress has been accom- 
plished on the study of the ergodic properties associated to (1)-(2), and, in 
particular, of the invariant density pax). In contrast, the knowledge of the 
time-dependent properties of the densities remains fragmentary and limited, 
essentially, to abstract methematical models of piecewise linear maps. t2~ 

An important class of dynamical systems giving rise to deterministic 
chaos are homoclinic systems, possessing for a particular combination of 
parameter values a structurally unstable trajectory which is biasymptotic 
to a fixed point. If the latter is of the saddle-focus type and the eigen- 
values of the linearized equations around it satisfy a certain inequality 
known as the Shil'nikov condition, then it can be established tT~ that near 
homoclinicity the system possesses trajectories which are in one-to-one 
correspondence with a shift automorphism with an infinite number of 
symbols. For three-variable systems the existence of a homoclinic orbit 
allows one to construct a 2D map which captures all these properties. 
More significantly for the purposes of this investigation, in many instances, 
this map can be further reduced to a 1D map ~s'9~ in the form of distinct 
branches whose number tends to infinity as the distance from homoclinicity 
goes to zero. Near homoclinicity these branches can be assimilated to 
straight-line segments, an idealization that seems in particular to fit 
reasonably well experimental data and model studies of the Belousov- 
Zhabotinski reaction. ~9'~~ One therefore disposes, in this sense, of examples 
of realistic continuous-time dynamical systems that underly the particular 
class of the above-described one-dimensional piecewise linear mappings. 
Our principal goal in the present paper is to work out a probabilistic 
description of homoclinic systems in which this piecewise linearization at 
the level of the Poincar6 map is adopted. 

In Section 2 we study the Frobenius-Perron operator for piecewise 
linear maps, limiting ourselves to the space of piecewise linear densities. We 
show that this generalized coarse-graining procedure ~3'4'~'~ reduces the 
Frobenius-Perron equation to a master equation governed by a stochastic 
transition matrix. In Section 3 we compute the principal properties con- 
cerning the time-dependent behavior of such densities and in particular we 
show that the generalized coarse-graining introduced suffices to evaluate 
exactly the time autocorrelation function of the variable x. In Section 4 we 
derive the explicit form of 1D maps for the spiral and screw types of attrac- 
tors associated to homoclinic chaos. In Section 5 we consider examples for 
each of these types of attractor and derive the corresponding master 
equation. We compute the time autocorrelation function explicitly and 
compare the analytic results with those of direct numerical solution of the 
dynamical system. The main conclusions of the work are drawn in 
Section 6. 
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2. REDUCTION OF FROBENIUS-PERRON EQUATION TO A 
MASTER EQUATION FOR PIECEWlSE LINEAR DENSITIES 

Consider a 1D endomorphism of the form (2), whose states x belong 
to the interval I. Let {Ci}, i = l  ..... M, be a partition o f I i n t o  M non- 
overlapping cells 

M 

O Ci =I  
i=, (3) 

C~c~ Cj= (,~J, i # j 

such that each cell is mapped by the transformation f on a union of cells. 
We thus require that 

N 

Xf, c,i = Y'. aj, Xc,, j =  1 ..... M (4) 
i=1 

where Xc~(X) is the characteristic function of cell Ci, and the elements air of 
the topological transition matrix are 1 or 0, depending on whether C~ 
belongs or not to f(Cj). Let us consider a piecewise linear initial density 
p0(x): 

M l Nlk)t ;~ 
p o ( X ) = j  ~'~ 40 ~J! X k "  "X*" Z , .  ~ xc,~ J (5) 

�9 = l  k = o  k~j 

where 
z ( k )  __ j --jcdXXk (6) 

and the coefficients {cr determine the probability Po(J) to find the 
system in cell Cj at time 0, 

I 

Po(J) =-~Gdxpo(x) = k=o ~ ~k~(j) (7) 

subject to the normalization condition 

M M I 

Z Po(J) = Z Z C~o~'(J )= I (8) 
j = l  j = l  k = O  

The action of the Frobenius-Perron operator 2,  Eq. (1), on a coarse- 
grained po(x) in the sense of Eq. (5) yields 

_ ~, 1 ~~ (fs (9) 
p , ( x ) -  L ~l f , ( f2 , (x ) ) l  ~, j �9 ( k )  

j = l  k = O  
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We notice that the contribution to the sum over branches -] f ,  , ~ = 1 , 2  ..... 
of the inverse transformation is nonvanishing only if x e f ( C j ) .  If 
C~ c f (C j ) ,  we shall denote by f~]_j~ those branches which map points of 
C~ back into Cj. By virtue of Eq. (4), Eq. (9) becomes 

M ] 1 ~176 t f - I  (x~J'-ajiZc,(X)) (10) p,lx)= Z E E ' -I x " I f  (f=(i--j}( ))1 ' ")  i , j = l  k = O a [ i ~ j )  I'lj 

In general, the probability density defined by this equation is not piecewise 
linear. However, for piecewise linear maps 

f ( x )  = A j . . _ j ) x  + zlA(i_j) , x ~ C j  ( 11 ) 

where Aj.,,_j) and A j.,,_, are constants, so that 

X - -  Aj ,u_j )  (12) 
f~]_j,(X) = Aj.,,_. 

1 1 
(13) 

, -I X I f  ( fai l- j)(  "))I  IAA._j,I 

It follows that the density pl(x) is again piecewise linear. 

where 

pI(X) = ~ ~ 0(llk)(i) 
�9 ~k) X*Xc,(X) 

i= I k =0 /ai 

~x(,~ i)-- ~ ~ ~i''~ aji F~(~176 AJ"- '~~  
j = l  ~( i - - j )  IAj . ,  . . . .  I L y,~jO) -]~"~Ajati_,,~ j 11 

1 
- Z /./~, ) ~ j =  1 , ( i ~ j )  j aJi I A j . . _ j ~ I  Ajal i_ j  I 

These last relations can be conveniently written as 

14) 

15) 

16) 

ot I =W'cx  o 17) 

Here cr n = 0, 1 ..... is a 2M-component column vector 

\ M) / 

18) 
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and W is a 2M x 2M block upper triangular matrix 

/w(Ol W(• 

W =  L 0 W(~'J 

with components 

(19) 

w~ ) p~io, 1 
= ~ aji ~, IAj~,,_j,I ['~j :t(i ~ j )  

,(I) ]z(il) (1] i E 1 0 = _-STi (20) ~j ~.~j~ IAj ..... ,I Aj,,,_,, 

�9 (01 d ja t ,_  D 

~ l ,  IAj=,,_j,I Aj,,,_~, a(i ~ j )  

After n iterations, the state of the system is entirely described by the density 
vector c%, obtainable from the equation 

~,, = W".  0% (21) 

We shall refer to this relation as the generalized master equation. As the 
Frobenius-Perron operator conserves the norm and the positivity of 
probability densities, the transition probability matrix W is stochastic. By 
Perron's theorem there is then exactly one eigenvalue unity. 

The triangular structure of W implies that "~ .(k) l I  A i is  eigenvalue of W (k' 
with ,k) 12 i I>/12'ck'l for i <  i', it is also eigenvalue of W. Let us denote by 
Ui+kg the eigenvector of W corresponding to the eigenvalue 2~ . If all 
eigenvectors of W are linearly independent, that is, 

2M 

a /u /=0  ~ a l = 0  VI (22) 
/ = 1  

they form a basis in which the initial vector ct o can be decomposed: 

M 1 

0 ~ 0 =  E E -(k) "i ui+ X-M (23) 
i =  1 k = O  

By the generalized master equation (21), the density vector at time n is 
then given by 

M I 

0~"= E E f'i](k'n"'k)"ui " , + k g  (24) 
i = 1  k = O  

where the coefficients {al k~} are determined by inversion of Eq. (23). 
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3. ANALYTIC CONSTRUCTION OF THE TIME 
AUTOCORRELATION FUNCTION 

Having at our disposal the formal expression of the probability density 
at any time [Eq. (21) or (24)], we are in the position to evaluate the 
statistical properties of the system and, in particular, to compute the time 
autocorrelation function of various observables of interest. 

Let O(x) denote the general form of an observable. By definition, its 
time autocorrelation function is 

C(n)=~ ~ [O(x.,)-O][O(x.,+,,-O] (25) 
m = O  

where 0 and a 2 are, respectively, the mean value and the variance of O. 
For ergodic transformations this expression can also be written as 

c(.)=~ f, axp,ix)[elx)-o][e(f"lx))-o] (26) 

where p,(x) is the invariant density, or, introducing the Frobenius-Perron 
operator, 

C(n)=~sf dx[O(x)-e)]g~"EO(x)-O]p,(x) (27) 

To evaluate this expression we limit ourselves to observables O(x) that are 
piecewise linear functions of x, which includes as a particular case the time 
autocorrelation function of the variable x. Proceeding as in the previous 
section, we therefore write the function [ O ( x ) -  O] ps(x), which we regard 
as an initial nonequilibrium density, as 

M 1 _ ( k ) /  :~ 
x - '  ~  ~ J l  k ~ , 

[ O ( x ) -  O] p,(x)=jY'.=. ,=o2" .-73~.~ Zcj~',~ (28) 

and deduce from the generalized master equation [Eq. (21) or (24)] the 
n th iterate of the Frobenius-Perron operator on that function, 

~ {k) �9 ~,, (j) 
~ " [e (x )  - ~] p,( x) = ~,) .','*X c,(x) 

j = l  k = o  /zj 
(29) 

Substituting Eq. (29) into Eq. (27) and performing the integration over x, 
one then arrives at a formal expression of the time autocorrelation function 
of the observable O(x) for any given O(x) and piecewise linear map having 
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the properties summarized by Eqs. (4) and (11). Hereafter, we consider 
explicitly two cases of special interest where the observable O(x) is: 

�9 The state variable x itself, O ( x ) =  x. 

�9 A symbol s taking a constant value within each element of the parti- 
tion, O(x) = Z~=, s(j)  Xc/X). 

3.1. The Observable O ( x ) = x  

In this case, the product [ O(x) - O] p.dx) is equal to 

= r uj, (x  - :~) Xc, (x-~)p,(x) s~=, ~,~o~ (30) 

Comparison with Eq. (28) yields 

{ ~go)(j) = -~uj, 

o~)' >(j) -- 'u)') 
,-j 

j =  1 ..... M (31) 

From these relations, the coefficients {a(i *~} of Eq. (23) and consequently 
the density vector ct,, [Eq. (24)] can be computed. The time autocorrela- 
tion function [Eq. (27)] takes then the explicit form 

where 

M I 

C(n)= Z Z - ' * ~ " * ~ "  ~j ,~j (32) 
j = l  k = O  

c(k) I ~, J fl(/+])i -j =~5 Z aJk'U,+/g4+tg ,--75T7-[ I --6j,-O~kO] (33) 
i =  ] 1 = 0  f l i  

3.2. The Observable  O ( x ) = Z ~ - - 1  s(j)Xc/(X) 
In this case, the product [ O ( x ) -  O] p~(x) is equal to 

s(j) XG-- y p,(x) = ~ [s(j)--  g] uj, 
j I j =  l [~,tj 

Comparison with Eq. (28) yields 

IOC (0)~ -, o { jJ=uj , [s ( j ) - -Y]  
~o t ~( j )  = 0 

(34) 

j =  1,...,M (35) 
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From these relations, the coefficients {ar *~} of Eq. (23) can be computed. 
Note that the transition probability matrix W being block upper 
triangular, its eigenvectors corresponding to eigenvalues {2~ ~ have their 
M last components vanishing: 

uj+ M.g= 0, i , j = l  ..... M (36) 

Consequently, the second half of Eq. (35) implies, by virtue of the linear 
independence of the eigenvectors of W [Eq. (22)], that the coefficients 
{a~i ~} vanish. The density vector et,, [Eq. (24)] depends therefore only on 
the eigenvalues {2~i~ It follows that the time autocorrelation function of 
the piecewise constant observable s [Eq. (27)] takes the explicit form 

M 

C(n) ~ 2 MO) ; (0 ) "  cj /~j 
j=l  

(37) 

where 

clO~_ 1 ~. a~Oluo.s(j)[1 Oil] (38) 
i = 1  

4. H O M O C L I N I C  CHAOS:  THE S H I L ' N I K O V  M A P  A N D  
ITS 1D C O N T R A C T I O N  

Consider the three-variable continuous time dynamical system 

.i." = pj, x + cot, y + P~, (x, y, z) 

r  + p, ,y  + Q,,(x, y, :)  (39) 

- = --2~,: + Rt,(x, 3," z) 

where p is a control parameter and P~,, Q~,, R, are analytic functions in 
x, y, z, and p, vanishing together with their first derivatives in (0, 0, 0). We 
suppose that the origin behaves as a saddle-focus (2t, >0,  p j ,>0) ,  that 
there exists for p = 0 a homoclinic orbit Fo biasymptotic to the origin, and 
that the inequality po<2o  is satisfied. Under these conditions the 
Shil'nikov theorem c7~ asserts that the flow contains a subset of chaotic 
trajectories in the sense specified in the introduction. 

Although a homoclinic orbit is structurally unstable, for parameter 
values near those characterizing the homoclinic situation a general pattern 
of reinjection of trajectories near the saddle-focus should subsist. This 
property allows one to construct a two-dimensional mapping capturing the 
essential features of the flow. To this end, we assume that it is possible to 
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carry out a C 3 coordinate  t ransformat ion which linearizes (39) near the 
origin. In a ne ighborhood V of this point, the equations in new coordinates 
(denoted for simplicity as the old ones) take the form 

f 
2 = p~, x - o9~ y 

(40) 

The local unstable manifold of  the saddle focus is now the x-y plane, 
whereas the stable one is the z axis. The Poincar6 map  in a plane trans- 
verse to the local stable manifold is then obtained as the composi t ion of 
two transformations.  The first one, which accounts for the behavior  near 
the saddle-focus, is obtained by straightforward integration of the linear 
equations (40), whereas the second one, which is responsible for the 
reinjection of the dynamics in the vicinity of  the fixed point, is assumed to 
be an isometric transport .  One arrives thus at the two-dimensional  
mappingS9.10~ 

x ' =  [ ( x  2 +y2)1/2 ~,~ - x * ]  cos ~p - h ~ ,  tx~/p")" s in  ~p + 2 , ,  

y '  = [ ( x  2 At'y2)l/2 ~l~ --X*'] sin ~p +h~,  ta"/p~)~ cos ~p +fit, 
x, y e N  (41) 

where 

l y ~,, = e -  ~o,/,o,, K _  [1 -- sgn(x)]  _ 2k + _  arctan - 
2 ~ x 

~ 2 - Oln and ~ is the inner domain  delimited by the arc of  spiral r = . v ~  , 
0 ~< 0 < 2z~, and the segment joigning its extremities. In this expression, x* 
and h define the points (x*, 0, 0) and (0, 0, h) where the homoclinic orbit 
respectively leaves and enters the ne ighborhood V; 2 is such that 
yr ~<x*~< 2; 2 u and fit, describe the distance from homoclinicity (20 = 0, 
.Vo = 0); ~p accounts for a rotat ion during the rigid transport;  and k is an 
integer which corresponds to the number  of  turns the trajectory completes 
around the saddle-focus between two successive intersections of  the 
Poincar6 plane. In the infinite area contract ion limit (h/x*--*O) and 
choosing for simplicity ~p = 0, (41) reduces to the one-dimensional  map  

X'=(X2+)32)llE~x+2--1, . ~ 2 + 2 - -  1 < X ~ ) ~ + 2 - -  1 (42) 

Here x, .~, 2, and )3 denote, respectively, a new variable and new control 
parameters,  equal to the old ones divided by x*. A detailed analysis of  this 
globally highly nonlinear law reveals two qualitatively different types of  
maps: 
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(i) A map in the form of nonoverlapping increasing or decreasing 
linear branches whose number  tends to infinity as the distance from 
homoclinicity, or more precisely, the new parameter  .~ tends to zero 

f~(x) = x sgn(x) ~tl - ~g,(.,-~]/2 - 2, + .~ _ 1 

~ + ( ~ 2 - 1 )  1-sgn(x)<<'x<2+(~2-1)  l+sgn(x)2 (43) 

Since each branch corresponds to a given even or odd number  number  of  
half-turns of the trajectory around the origin between two crossings of  the 
Poincar6 surface, this type of  map describes a spiral-type attractor. 2 

(ii) A map which at homoclinicity exhibits two infinite sequences of 
decreasing and increasing branches. At finite distance from homoclinicity, 
these two families of  branches are finite and separated by a quadratric well 
which becomes deeper as the system evolves to homoclinicity. 

( + f i - " ] ' /2 -  1 f~.(x)=xsgn(x)( [I-sg"(.'~ ~'/") 1 x2/i 
(44) 

. ~ ( 2 -  1 < x  ~<.~:- 1 

As this map allows for reinjection on both sides of  the origin, it describes 
a screw-type attractor. 

Notice that at homoclinicity both maps turn out to be piecewise 
linear. In the sequel the statistical properties of  the two types of  attractors 
generated by the dynamical system (42) will be explored by adopting the 
simplification that the piecewise linear character of  the maps extends in a 
certain vicinity of  homoclinicity as well. 

5. P R O B A B I L I S T I C  D E S C R I P T I O N  OF T H E  P IECEWISE  L INEAR 
1D C O N T R A C T I O N  OF THE S H I L ' N I K O V  M A P  

As shown in Section 2, in addition to the requirement of  piecewise 
linear maps, the reduction of the Frobenius-Perron  equation to a master 
equation relies on the property that the phase space partition be such that 

2 At homoclinicity, the reinjections of the dynamics in the x-y plane are made along a line 
passing by the origin. By definition, for the spiral-type attractor the reinjections occur on 
one side of the origin, whereas for the screw type they occur on both sides. 
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each of its elements is transformed by the deterministic dynamics into a 
union of its elements. In this section we build models of spiral- and screw- 
type attractors compatible with these properties and derive subsequently 
the master equation and the behavior of the time autocorrelation function 
of the two classes of observables introduced in Section 3. Hereafter, we 
consider separately the cases of spiral- and screw-type attractors. 

5.1. Spiral-Type Attractor 

Let us consider the map (43) when limited to three branches corre- 
sponding to l, 3, and 5 half-turns of the trajectory around the origin 
(k = l, 2, 3). The 1D map fs reads then 

x 
f s ( x ) =  (2i - l  t - ~ - 1 ,  b i_ l<x<~bi ,  i = 1 , 2 , 3  (45) 

We choose 

fs(Cl)  = CI u C2 

fAC2) = Cl w C2 u C3 

fA C3) = C2 u C3 

(46) 

where the partition considered is the one defined by the points of discon- 
tinuity, C~-- ]b~_ l, bi]. One can easily check that these relations imply 

~ 0.67546 

~ =  1 --(2(1 +~)(1 +~2) 

bo = ~2 + ~ _  I 

bl = __~3 

bE = __~5 

b3 = 

(47) 

As this map satisfies conditions (4) and (11), the action of the Frobenius- 
Perron operator can be reduced to the iteration of a stochastic matrix. 
Taking into account Eqs. (45)-(47), this transition probability matrix, 
whose elements are given by Eqs. (20), reads 
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W =  

r 

1-,$ 

0 

0 

0 

0 

r 2( l + r  -.s 
- -  0 
I - ~  r + 3r + 2C- + r 3 ) 

.-3 r 8 ( I - r  2( 1 -~2)(1 -'~) 
% 1_r162 r + 3r 2r + r 

1 _r162 .--5 
1- r  ~ O 

.~2 0 0 - ~  

2r I - .,t) 
0 (1-r +r 

2~s(I -:~) 2r - r  1) 
1 +r .r r 

2(I _ ,~)(.~+ r 2r176 - I) 

r 1 ) 
0 0 2 + 3 r 1 6 2  3 _~6 

0 0 0 

I _r .~_~5 

~7(2+3r162162 
0 r 

r162 
~10_o~2 

.~2_r 
__r 

1 _~4 

(48) 

Densities evolve then according to the master equation (21) or (24). The 
eigenvalues of W are all real, 

2~1 ~ = 1 2~111 = -0 .552 

2~ ~ = 0.244 2~ 1~ = -0 .050  

9.~o~__ -0 .120  2~11-0.0313 - 

(49) 

The invariant eigenvector reads 

/~ t / 0 . 3 3 0  

(50) 

From Eq. (24), we deduce that ~s is equal to u~, so that the stationary 
density is 

ps(x) = 1.87Xc,(X) + 1.97Xc,(X) + 0.70Xc3(X) (51) 

This expression allows one to compute the average value of various quan- 
tities and to check that the 1D map (45) displays sensitivity to initial 
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conditions with a Lyapunov exponent equal to 0.681. Let us focus on the 
time autocorrelation function of the observables considered in Section 3. 

5.1.1. T h e  O b s e r v a b l e  O(x)=x. From Eq.(32) applied to the 
transition probability matrix W of Eq. (48) we deduce that the time 
autocorrelation function of the x-observable decays as 

3 1 
C(n)= ~ ~ -(k)2(k)~ (52) cj  j 

j = l  k = 0  

where 

c(1 ~ = 0 c(1 ') = 0.927 

ct2~ = 0.180 c~l)= 0.024 (53) 

c~ ~ -0.128 c(l)=3 -0.003 

In Fig. 1, a comparison is made between the analytical expression (52) 
and the numerical data obtained by computing the time autocorrelation 
function from the trajectory according to Eq. (25). 

5 . 1 . 2 .  T h e  O b s e r v a b l e  _ M O ( x ) - - Z i = l  s ( j )  Xcj(X). A discrete 
observable of interest in the context of homoclinic systems is the number 
of half-turns the trajectory completes in the vicinity of the saddle-focus 
between two successive intersections of the Poincar6 plane. For the map f~, 
this observable is expressed as 

O(x) = IXc,(X) + 3Xc,(x) + 5Xc3(X) (54) 

0.5 

-0.5 
2 4 6 8 

Fig. 1. Comparison between the analytical expression of the time autocorrelation function of 
the observable x (solid line) and the numerical data obtained by computing this function from 
the trajectory (dots) for a spiral type of attractor. The numerical autocorrelation function 
shown was obtained by averaging 5000 autocorrelation functions of length N = 1000. 

S22/76/5-6-14 
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Its time autocorrelation function, which is given by Eq. (37), is found to 
decay as 

3 

C(n) = T ~ o , . o , .  c j  A j  ( 5 5 )  
j = l  

where 

c~ ~  = 0 

c~~ 0.232 (56) 

cO~ 0.768 3 

In Fig. 2, a comparison is made between the analytical expression (55) and 
the numerical data obtained from Eq. (25). 

5.2. Screw-Type Attractor 

Let us restrict the 1D map f,, [Eq. (44)] to two branches k = 1 and 
one well k = 2. We also choose 

f , ,(Cl) = C1 u C 2 u  C3 u C4 

f,,( C2) = C4 

f,.( C3) = C4 

f.(C4) = Cl u C2 u C3 u C4 

(57) 

where f,. denotes the piecewise linear map obtained by neglecting the terms 
in y,/x in the two branches of f,. and by replacing the well by two segments 
of straight line passing by its minimum. As above, the partition is deter- 

0 . 8  ~ 

0.6" 

0.4- 

0.2 

0 

-0.2 
2 4 6 8 10 

Fig. 2. Comparison between the analytical expression of the time autocorrelation function of 
the piecewise constant observable s (solid line) and the numerical data obtained by computing 
this function from the trajectory (dots) for a spiral type of attractor. The numerical 
autocorrelation function was obtained as in Fig. I, 
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mined by the points of discontinuity, C,. = ]b,._ t, b;]. The map f,,(x) reads 
then 

- 2 x -  1 bo<x<~b~ 

/ 1 2 f l - 1  
) f f - ~  x + 6(-~_-~) b,<x<~b2 

f,.(x) = ] 1 . 4fl - 1 (58) 

I -~X+l--- ~ b2<x~b3  

k 4 x -  1 b3 <x  <~b4 

where 
2 l 

~ m  bo= - ~  b3 12 

1 l 
bl = 6 b4 3 (59) 

13 In 2 b2-b~ 
b2 - 192n{ 1 + [ln 2/zt] 2} 1/2 2 ~ I/n)arctanlrt/ln2) fl = b3 - b 4  

By construction this map satisfies conditions (4) and (11 ), so that densities 
evolve according to the master equation (21) or (24). Taking into account 
Eqs. (57)-(59), we have for the transition probability matrix W, whose 
elements are given by Eqs. (20), 

W =  

1 1 3 3 o o  ~ ~ o o 

~f l -  0 0 0 0 
1 - f l  3(1 - f l )  3(1 - f l )  

4 l0 l0 

0 0  fl aft 0 0 3fl 
1-6 I-6 

I 1 3 4 ( 2 f l : - 3 f l + l )  2--8f l  3 
I 1 ~ 1-6 3f12--2fl - 1 2 - 3 f l  IV 

l 1 
0 0 0  0 0 0 

4 4 

0 0 0  0 3fl 2 - 2 f l -  1 0 0 3 f l : - 2 f l - 1  

0 0 

5 ( I - f l )  2 5fl 

0 0 0 0 

0 0 0 0 

8O 8O 

pC2-3p) p(2-3BI 
80 80 

I I 

16 1 + 2fl-- 3fl 2 2 - 3 f l  16 

(60) 
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Its spectrum comprises now one pair  of  complex eigenvalues, 

2]~ 1 2(,1) = -0.09375 + 0.1321 i 

2~~ - � 8 8  2 ~ =  - - 0 . 0 9 3 7 5 -  0.1321 i 

2 (0)=0 ) , ( ' ) = 0  
3 ~3 

).~o) = 0 ).~,J ) = 0 

(61) 

The invariant eigenvector reads 

" / 
0.4 

0.142 [ 

0.058 [ 

0.4 I 

u l =  0 

0 

0 

!o ~ J 

so that  the s tat ionary density is 

p.,(x) = 4[Xc,(X) + Zc2(X) + Xc,(X) + 2Xc,(X) ] 

(62) 

(63) 

F rom this expression, one can easily check that  the 1D m a p  (58) displays 
sensitivity to initial conditions with a Lyapunov  exponent  equal to 0.952. 
Let us turn to the time autocorrelat ion function of the observables con- 
sidered above. 

5.2.1. T h e  O b s e r v a b l e  O(xJ=x. From Eq. (32) applied to the 
transition probabil i ty matrix W of Eq. (60) we deduce that the autocorrela-  
tion function of the x-observable  decays as 

4 I 

C ( n ) =  E E c~"2~ k'" (64) 
j = l  k = O  

where 

c(j ~ = 0 c(1 t) = 0.608 - 0.016 i 

c~ ~  -0 .216  c~2') = 0.608 + 0.016i 

C (~ -- 0 C ( l ) = 0 
3 - -  3 

c~, ~ = 0 c~ ~) = 0 

(65) 



Probabilistic Approach to Homoclinic Chaos 1303 

1 '  

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

O O 0 O 

0 2 4 6 8 10 

n 

Fig. 3. As in Fig. l, but for a screw type of attractor. 

In Fig. 3, a comparison is made between the analytical expression (64) and 
the numerical data obtained from the trajectory according to Eq. (25). 

5.2.2. The Observable O ( x ) = Z M l s I j )  XcflX). Let us con- 
sider as discrete observable the number of  half-turns the trajectory com- 
pletes around the origin between two intersections of  the Poincar6 plane, 
or explicitly in the case of  map (58), 

O(x) = 4Xc,(X) + 2Xc:(X) + 2Xc,(X) + 4Xc4(X) (66) 

For such an observable, the time autocorrelation function is given by 
Eq. (37) and found to depend on lag n as 

4 
C(n) = ~, ~(01~(0)" D ^J (67) 

j = l  

0.8 

0.6 

0.4 

0.2 

0 

"-0.2 

-0.4 

Fig. 4. 

0 2 4 6 8 10 

n 

As in Fig. 2, but for a screw type of attractor. 
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where 

c',~ = 0 

c' ,~  = 1 
(68) 

C ( 0 )  - -  0 
3 - -  

c'.~ = 0 

In Fig 4, a comparison is made between the analytical expression (67) and 
the numerical data obtained from Eq. (25). 

6. CONCLUSIONS 

In this paper a probabilistic description of homoclinic systems has 
been carried out analytically. In particular, the time autocorrelation func- 
tions of observables such as the state variable x have been derived for 
models of the spiral- and screw-type attractors associated to homoclinic 
chaos. Our results can readily be generalized to piecewise analytic 
observables and to observables having discontinuities at the elements of 
periodic orbits/4~ It is also obvious that the formalism used here is not 
limited to homoclinic systems, but extends to any piecewise linear map 
having the properties summarized by Eqs. (4) and (11). 

In addition to giving quantitative information on the way the dynamics 
loses its memory, we believe that the decay modes of the time autocorrela- 
tion function of the x-observable provide a useful characterization of 
spiral-type versus screw-type attractor. For the spiral-type attractor, the 
leading decay rate of the time autocorrelation of the position observable is 
determined by a negative eigenvalue. This means that the point of reinjec- 
tion of the flow on the Poincar6 plane oscillates around the mean value 
with period two. For the screw-type attractor, there is also a negative 
leading eigenvalue, so that the point of reinjection of the flow still oscillates 
around the mean value ff with period two. But in addition there exist 
complex eigenvalues. The point of reinjection oscillates then, on the average, 
from one side to the other with a more complicated period obtained from 
the trigonometric representation of the complex eigenvalues. Furthermore, 
for the examples considered here, the decay modes of the screw type of 
attractor interfere in a destructive way, whereas for the spiral type they 
reinforce the oscillation of the leading one. This trend is confirmed by the 
study of further examples involving higher number of branches. It turns out 
that several negative eigenvalues of about the same amplitude may exist for 
both types of attractors. But in the case of the spiral type their effect seems 
to reinforce that of the leading eigenvalue, whereas for the screw type 
these negative eigenvalues, eventually together with complex ones, seem to 
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concel the effect of the leading one. We believe this is due to the coexistence 
of increasing and decreasing branches which occurs in the 1D map of the 
screw but not in that of the spiral type of attractor and so finally to the 
topology of the attractor itself. Furthermore, for both types of attractors it 
can be shown that when every branch is mapped onto the interval the 
correlation function is determined by a single non-trivial eigenvalue: 
~i 1/(Ai IA~I), the magnitude of which is then smaller in the case of the 
screw-type attractor. 3 Owing to the destructive interference between the 
decay modes of this type of attractor and to the lowering of the leading 
one, the time autocorrelation functions of the screw-type attractors appear 
less organized. As a consequence the power spectra of screw-type attractors 
have a more pronounced broad band component than those of the spiral 
type where characteristic frequencies emerge. This is corroborated by 
power spectrum computation of continuous-time dynamical systems 
generating as the parameters vary spiral and screw chaos. ~2~ 
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